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Summary. General models for continued full-sib mating 
with two diallelic autosomal loci taking account of link- 
age, mutation and selection within and among lines are 
considered. The problems are first approached by deriving 
the full probability transition matrix, taking account of 
linkage, mutation and within-line selection. Exact solu- 
tions to the equilibrium system are possible, but the com- 
putational effort is prohibitive, and this is exacerbated by 
the introduction of between-line selection. A second ap- 
proach is based on decomposing the transition matrix into 
blocks whose properties suggest approximations that lead 
to a rapid iterative solution of the equilibrium system. 
Extensive numerical analysis of models of within-line se- 
lection and of combined within- and between-line selec- 
tion were made. The results show that equilibrium values 
are essentially independent of  the degree of linkage under 
models of within-line selection. This is because mutation 
plays a dominant role in determining equilibrium struc- 
ture. Results from models of  combined within- and be- 
tween-line selection show that between-line selection has 
the dominant influence on gene frequency equilibrium. 
Both within-line and between-line selection produce ap- 
preciable linkage disequilibrium only when selection is dis- 
ruptive. The results also suggest that much of the two- 
locus equilibrium structure can be predicted from a 
knowledge of single-locus equilibria. 
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Introduction 

The consequences of  full-sib mating for two diallelic auto- 
somal loci in the absence of mutation and selection were 
considered briefly by Jennings (1917) and in greater detail 
by Haldane and Waddington (1931). Reeve and Gower 
(1958) derived the 19 x 19 generation matrix for the case 
of  an unselected pair of  alleles at one locus linked to a 

pair at another locus with equal selection against both 
homozygotes. They considered within-line selection and 
the special case where selection acts equally within and 
between lines. In this paper we consider general models 
for continued full-sib mating with two diallelic autosomal 
loci, taking account of  linkage, mutation and selection 
within and among lines. 

Two approaches to this problem are developed. The 
first approach follows that of  earlier workers by deriving 
the full probability transition matrix for full-sib mating 
with selection within lines and mutation. While it is com- 
putationally possible to obtain exact solutions to the equi- 
librium system for this formulation, the computational 
effort is nearly prohibitive. The introduction of be- 
tween-line selection, as done in the one-locus case by 
Clegg and Kidwell (1974), further complicates the compu- 
tational problem. Consequently, a second approach to sol- 
ving the equilibrium system is presented. This second ap- 
proach rests on replacing the transition matrix by a series 
of linear operators. The properties of  the individual oper- 
ators permit certain approximations which allow a rapid 
iterative solution of the equilibrium system. 

General Models 

Within-Line Selection 

The model is developed with complete generality, but 
only a few specific cases are considered in detail. The 
assumptions include two diallelic loci, constant selective 
values for each genotype which may differ between the 
sexes, constant recombination rates which may differ be- 
tween sexes, and constant mutation rates for each locus. 
Mutation at each locus is assumed to occur independently 
after gamete formation, i.e. after crossing over occurs. Par- 
ents within each line (= mating type) are chosen at ran- 
dom after selection. Selection is assumed to occur only by 
viability differences. 

Let/~a be the probability that a gamete expected to 
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Table 1. Genotypes with their gamete pair (AB = 1, Ab = 2, 
aB = 3, ab = 4), identification and within-line fitness values 

Gamete Relative Fitness 
Genotype pairs Identification Males Females 

AB/AB (1,1) 0 ~Vm0 wf0  
AB/Ab (1,2) or (2,1) 1 wml Wfl 
AB/aB (1,3) or (3,1) 2 win2 wf2 
AB/ab (1,4) or (4,1) 3 win3 wf3 
Ab/Ab (2,2) 4 win4 wf4 
Ab/aB (2,3) or (3,2) 5 Wms wf5 
Ab/ab (2,4) or (4,2) 6 win6 wf6 
aB/aB (3,3) 7 win7 wf7 
aB/ab (3,4) or (4,3) 8 Wm8 wf8 
ab/ab (4,4) 9 Wm9 wf9 

carry the allele A carries the allele a, i.e. that A has mu- 
tated to a, and v a be the probability of  reverse mutation. 
The symbols #b and v b are defmed similarly for the B 
locos. We designate rm and rf as the probability o f  recom- 
bination in males and in females respectively, where 
(0 ~< rm, rf ~< .5). The relative fitness of  each sex and 
genotype is defined in Table 1. Individuals of  each of  
the 10 male genotypes can mate with individuals o f  each 
of  the 10 female genotypes to produce 100 distinct ma- 
ting types or lines. In this paper the mating types are 
identified by a two digit number; the first digit designates 
the genotype number (Table 1) of  the male and the sec- 
ond digit the corresponding number of  the female. For 
example, mating type 34 is 3 = A B / a b ~ x  4 = A b / A b  99. 

We note here for later use in computing that the number 
o f  mating types may be reduced to 55 by combining the 
off-diagonal elements which are the reciprocal mating 
types. 

The probabilities that the parents of  any generation, t, 

are of  each mating type can be expressed as the product 
o f  the t th power of  a 100 x 100 generation matrix and 
100 x 1 column vector of  their probabilities in some ini- 
tial generation, 0, as follows: 
[Pi, t] = [ai,j] t x [Pj,0] . . . . . .  (1) where 

[Pi, t] is the 100 x 1 column vector of  probabilities 
that a randomly chosen full-sib pair in generation t will be 
of  mating type i. [ai,j] is a 100 x 100 generation matrix. 
The elements ai, j are the conditional probabilities that 
mating type j in one generation will give rise to mating 
type i in the subsequent generation. [Pj,0] is a 100 x 1 
column vector of  the relative frequencies of  the mating 
types among adult parents in some initial generation, 0. 

Calculation of  the ai,j is straight-forward, but tedious. 
The procedure is outlined briefly below. The males and 
females of  each mating type produce 4 kinds o f  gametes 
with a frequency distribution determined by the mutation 
and recombination rates. The distribution o f  gametes pro- 
duced by males and females o f  3 representative genotypes 
is given in Table 2. The distributions for the seven remain- 
ing genotypes are calculated similarly. Within mating 
types, each of  the 4 kinds of  male gametes can unite with 
each of  the 4 kinds of  female gametes to produce 16 zygotic 
combinations of  each sex. Their frequency distribution is 
determined as the product of  the gametic frequency distri- 
butions of  the two sexes. There are, of  course, only 10 
distinct kinds of  zygotes and their frequencies may be 
obtained by combining the off-diagonal reciprocals. Fol- 
lowing zygote production each of  the 10 distinct kinds of  
male zygotes can mate with each of  the 10 distinct kinds 
o f  female zygotes to again from 100 mating types. 

We describe in detail the calculation of  a34,45. Any 
other ai, j can be calculated similarly. Consider the pair o f  
mating type 45. We are interested in the progeny pairs 

Table 2. Gametic array produced by three representative genotypes of each sex. The model assumes that the mutations occur indepen- 
dently and after crossing over. gijk = the frequency of the k th gamete produced by the jth sex of the i th genotype. 1 = 0,1,...9;j = 1,2 (1 -- 
male, 2 = female); k = 1,2,3,4 

Designation 

Genotype Gametes Frequency Male Female 

AB/AB AB (l't~a) (l't~b) gO,l,1 go,2,1 
Ab (l'#a) ttb gO,l,2 g0,2,2 
aB /~a (l'Pla) g0,1,3 g0,2,3 
ab ~ta/~b go, 1,4 g0,2,4 

AB/Ab AB (1-P.a) (1-/a b + Vb) /2 g l  1,1 gl,2,1 
Ab (1-/~ a) (1 + #b  - Vb)/2 g1,1,2 gl,2,2 
aB ~t a (1-/% + v b)/2 gl,l,3 gl,2,3 
ab /*a (1 + ~t b - u b)/2 gl,l,4 gl,2,4 

AB/ab AB I(1-r m)/21 [(l~a) ( l~b)+ VaUb] + (rm/2) [Va(1-/~b) + Vb(1-~a)i g3,1,1 g3,2,1 a 
Ab [(1-rm)/2] [(l~a)~. b + Va(1-Vb)] + (rm/2) [(1~ a) (Du b) + yaP. b] g3,1,2 g3,2,2 a 
aB [(1-r m)/21 [/~a(l~b) + Vb(1-Va)] + (rm/2) [/aaVb + (1-Va) (l~b)] g3,1,3 g3,2,3 a 
ab [(1-rm)/2] [#a/~b + (1-%) (1-Vb)] + (rm/2) [Ua(1-Vb) + ~tb(1-%)] g3,1,4 g3,2,4 a 

a The formulae for the females differ from those for the males in that rf replaces r m 
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that are of type 34, i.e. the male of genotype 3 = AB/ab = 
(1,4) or (4,1) and the female of  genotype 4 = Ab/Ab = 
(2,2)�9 The frequency of the AB/ab genotype in the male 
progeny is g4,1,1 gs,2,4 + g4,1,4 gs,2,1 where the gi,j,k 
are calculated as in Table 2. Similarly, the frequency of 
females of genotype 4 is g4,1,2 gs,2,2- Each of these is 
subject to selection so the number of  adult pairs of type 34 
measured relative to the total progeny of pairs of  type 45 

will be 534,4 s =Wm3 (g4,1,1 g5,2,4 +g4,1,4  gs ,2 ,1)Wf4 

(g4,1,2 gs,2,2)" 
To obtain frequencies in the new generation we must 

normalize by 

99 
5.,4 s = ~ 5i,45. Hence, a34,4 s = 534,4s/5 . ,45.  

i=0 

Of course, at equilibrium [Pi, t] --- [Pi, t-  1 ] for all i. Gen- 
eral equilibrium solutions can be obtained by the method 
suggested by J.F. Crow and described in detail by Clegg 
and Kidwell (1974) for the single locus case. 

Between-Line Selection 

The model of between-line selection is similar to the single 
locus model of Clegg and Kidwell (1974)�9 We assume an 
infinite number of  full-sib pairs (populations of  size 2), 
whose frequency distribution is given by equation 1. The 
mating types are assumed to reproduce at constant rates, 
bi, per generation. Between-line selection is assumed to 
follow within-line selection and formation of mating 
types. Thus the number of  pairs of  mating type i, after 
between-line selection wilt be 

99 
ni = bi ~j=0 ai'j Pj , t - l"  

The relative frequency will be Pi,t where 

[Pi, t] = [bi,i] x [ai,j] x [Pj,t-1] 

and [bi, i] is the 100 x 100 diagonal matrix whose i,i th 
element is the renormalized between-line selective value 

99 
b i ' i = b i /  ~ j=0 nj. 

The matrix [ai,j] is the previously defined 100 x 100 
generation matrix. The vector [Pi, t] is the previously de- 
fined 100 x 1 column vector of mating type frequencies 
of adult parents�9 

It is important to note that the matrix 

[di,j] = [bi,i] x [ai,j] 

is not a probability transition matrix because its column 
sums are not 1 and its value depends on [Pj,t-1 ] so that 
the computational methods described earlier cannot be 
employed. 

Computational Methods 

The equilibrium equations are much too complicated to 
permit analytical deduction and generalization. An alterna- 
tive approach is to evaluate them numerically for a num- 
ber of  parameter values reflecting different specific mod- 
els of  within- and between-line selection. The amount of  
computer time required to evaluate the exact solutions 
proved to be excessive, because, after some simplification, 
fifty-five 54 x 54 determinants must be evaluated each 
time. Instead, we use a rapid and accurate approximation. 
It is described in the following paragraphs and the results 
of the numerical analysis are discussed in the concluding 
section of the paper. 

The programming is greatly simplified by exploiting all 
the symmetries of  the situation by distinguishing hetero- 
zygotes on the basis of which allele came from which 
parent. When this is done, there are 256 = 28 mating types 
that fall into 55 categories, or orbits, with lines in the 
same orbit having equal frequencies after at most two 
generations. A description of the methods used can 
be obtained by writing to the Division of Biology and 
Medicine, Brown University, Providence, Rhode Island 
02912, Attn: Section of Population Biology and Genetics. 

Each of the 4 pure lines is an orbit in itself�9 There are 
56 lines that are pure at one locus and heterozygous at the 
other. (A line is classed as heterozygous if both alleles are 
present even though a heterozygous line, such as AB/AB x 
Ab/Ab, may be made up of homozygous individuals.) 
These constitute 16 orbits and there are 35 orbits made 
up of the 196 lines that are heterozygous at both loci�9 

l 
If  we let Pi and Pi, i = 1, 2 ..... 55 be the frequency of 

the i-th line in two successive generations then 

55 I 
Pi = Ig ci, j pj / 

i=l 

where [el,j] is a constant matrix, but not a probability 
matrix, and ~ is a number which measures the average 
between-line fitness�9 As noted earlier, ~ is a linear combi- 
nation of the p's, however, at equilibrium, when p~ = Pi, it 
will have some numerical value, say X. Thus the equili- 

brium values of  Pl,  P2, -.., Pss will be an eigen-vector of 
the eigen-value problem 

Pl  i] e l ,  1 Cl,2 " "" Cl, SS Pl 

P2 C2, 1 C2,2 " ' "  C2, SS P2 
X = 

P55 Css, 1 C55, 2 " " " CS5, SS PSS 

We order the orbits so Pl ".-, P4 are the frequencies of 
the pure lines, Ps'..P20 are those of  the lines pure at one 
locus and P21 . . . . .  Ps s are those of  the lines with both 
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alleles at both loci. Then the ci, j with i = 5,6 ..... 20 andj  
= 1,2,3,4 are o f  the same order of  magnitude as the muta- 
tion rates. So, too, are those with i = 21,22 ..... 55 andj  = 
5,6 ..... 20, while those with i = 21,22 ..... 55 andj  = 1,2,3,4 
are o f  the order o f  the squares of  the mutation rates. 

Accordingly, we partition the matrix [Ci,j] as 

I I + 0A B ! 1  
0D E 

02G 0H 

where 0 is a number o f  the same order o f  magnitude as 
the mutation rates. It is important to realize that even 
though there is no general parameterization that will give 
[el,j] this form with constant submatrices A,B ..... K, never- 
theless, for any particular selection, mutation, and recom- 
bination values, we can choose 0 arbitrarily and will then 
have definite values for A, B ..... K. 

It proves to be in convenient to seek the eigen-vector 
ss 

normalized by the condition 2; Pi = 1. Accordingly, we 
i= 1 

seek a positive eigen-vector 

where 

X =  

Xl 

X2 

X3 

X4 

m _ 

XS 

X6 

, Y : ,and Z = 

X20 

X21 

X22 

X55 

without committing ourselves, yet, to any normalization. 
55 

When this is found, we can set Pi = xi / ~i= 1 xi" 

We seek to solve 

AX = X + 0AX + BY + CZ (2) 
XY = 0DX + EY + FZ (3) 
XZ = 02GX + 0HY + KZ (4) 

with power series of  the form 
o o  

X = Z X n O n, X = Z Xn0n ,  
n=O n=0 

o o  

y = 0 ~  ~ YnOn, andZ=02~, Z n 0 n .  
n=O n=O 

For the terms in 00 we get just XoXo = Xo, so we must 
take Xo = 1. Then the terms in 0 ~ give 

koX1 + k l X o  =X1 +AXo +BYo 

ko Yo = DXo + EYo. 

Since ko = 1, 

X t X o = { A + B ( I - E )  -I D}Xo.  

We must choose kl to be the dominant eigen-value of  
the 4 x 4 matrix L = A +  B ( I - E )  -1 D and let Xo be a 
corresponding eigen-vector. (Since E is a non-negative 
matrix of  norm less than 1, ( I - E )  -1 , and hence L, are also 
non-negative). It can be chosen so that its elements are all 
positive. For most purposes, X = Xo, Y = 0Yo = 0 ( I - E )  -I 
DXo, Z = 0 is a very good approximation to the solution. 

Equations (2)-(4) pose an eigen-vector problem, so 
solutions are only determined up to an arbitrary scalar 
factor�9 For higher order approximations the presence of  
an arbitrary constant is very inconvenient�9 Any of  our 

N 
approximate solutions X = E Xn0n can be resolved 

n=O 
into its components in terms of  the eigen-vectors of  L. 
Since the constant term, Xo, is an eigen-vector, we can 
normalize by insisting that the component of  X in that 
direction is precisely the Xo originally chosen�9 In other 
words, we can require that X~, X2, ... all lie in the sub- 
space spanned by the other eigen-vectors. We shall make 
this more explicit below, but the idea is that, since kt is 
the dominant eigen-value o f  L, when we restrict X:-L to 
this subspace it is 1-to-1. 

We have already chosen Xo = 1, Xt, Xo, and Yo so that 
the equations (2)-(4) are satisfied to terms of  order 0 k for 
k = 0 and 1. For k >i 2, the terms in 0 k are 

k 
X iXk_  i = X  k + A X k _  1 + B Y k _  1 + C Z k _  2 (5) 

i=o 

k - 1  
Xi Y k _ i _  1 = D X k _  1 + E Y k _  I + F Z k _  2 (6) 

i=0 

k--2 
X i Z k _ i _  2 = G X k _  2 + n Y k _  2 -t- K Z k _  2 (7) 

i=0 

Suppose Xo = 1, X~ . . . . .  Xk- 1, Xo . . . . .  X k - 2 ,  Yo, ..., 
Y k - 2 ,  and Z o . . . .  , Zk_  3 have all been determined. To 
satisfy (7) we need only set 

k--2 
Zk_ 2 = (I -- K) -~ {GXk_ 2 + HYk_ 2 - 

i=l  
From (6) we must have 

k--I  
Y k -  1 = (I  - E)  - t  {DX k I + F Z k - 2  - Z Xi Y k - i -  1 } 

- i=l  
which, substituted in (5) yields (8) 

XkXo + (X1 - L) Xk_ l = B(I- -  E) -I 

k--I  k--1 
{FZk 2 - ~ t  I X i Y k - i - 1 } + C Z k  ' 2 - -~ t  2 XiXk i - . =  - . =  - ( 9 )  

~k i Z k _ i _ 2  } �9 
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Equation (9) is solved by resolving its right hand side 
into its components in the X0 direction and in the sub- 
space spanned by the other three eigen-vectors of L. Since 
X1-L is a 1-1 map of the subspace onto itself, we can 
choose X k and Xk_ 1 so that the left hand side of (9) is 
equal to the fight hand side. 

To be quite explicit, let Q be the matrix whose 
columns are the eigen-vectors of L, with Xo first. Now 
Q-1 LQ is the diagonal matrix of the eigen-values of L and 

1 I 

Q-1Xo = 0 l 

0 1  

0 1  

Then let 

M = X t I -  Q - ' L Q  = 

0 0 0 0 

0 a 0 0 

o o ~s o 

0 0 0 7 

where o~, ~, and 7 are strictly positive. If  we multiply equa- 
tion (9) by Q-1 we get an equivalent equation 

XkQ-IXo + MQ-J Xk_ 1 = U (10) 

where 

7 Uo 

Ul 

u2 ] 

U3.J 
U= 

is Q-l times the right hand side of (9). Clearly, we must 
have X k = Uo, but since M is singular, equation (10) does 
not determine Xk_ l uniquely. However, it is natural 
enough to choose the solution 

0 

Xk-, =Q ut/~ 

u2/t~ 

ua/7 

It is not self-evident that the power series we obtain in 
this way must converge. However, the implicit function 
theorem guarantees the existence of a solution which is 
analytic in 0 and we have seen that its power series can 
only be the ones we have determined. 

Numerica l  Resul t s  

A virtually unlimited number of specific models can be 
generated from the combination of  within- and between- 
line fitness schemes. Moreover, the potential number of 
parameters is unmanageably large. For example, there are 
55 different mating types if we do not distinguish order- 
ings by sex; this results in 55 separate between-line fitness 
parameters. To reduce the number of between-line para- 
meters we consider only multiplicative selection, i.e. selec- 
tion models where the line fitness (b i for the i th line) is 
the product of fitness values assigned to genotypes. As- 
suming multiplicative between-line fitness and that geno- 
typic fitness is the same over sexes reduces the parameteri- 
zation from 55 to 10. To further reduce the number of 
between-line fitness parameters only special models of se- 
lection have been investigated. The most elementary mod- 

Table 3. Models of Within- and Between-Line Selection 

Fitness Model 

Within-Line Selection Between-Line Selection 

Genotype I II III I II III 

AB/AB 1 1 1+2s 1 (1-2t)2 
AB/Ab l+s 1-s 1 l+t (l-t)  (1-2t) 
AB/aB l+s 1-s 1 l+t (l-t)  (1-20 
AB/ab (l+s) 2 (l-s) 2 l+2s (1+02 (1-02 
Ab/Ab 1 1-2s 1-2s 1 1-2t 
Ab/aB (l+s) 2 (l-s) 2 1-2s (l+t)~ (1-02 
Ab/ab l+s (1-s) (1-2s) 1 l+t 1-t 
aB/aB 1 1-2s 1-2s 1 1-2t 
aB/ab l+s (l-s) (1-2s) 1 l+t 1-t 
ab/ab 1 (1-2s) 2 1+2s 1 1 

l+2t 
I 
1 
l+2t 
1 - 2 t  
1 - 2 t  
1 
1 - 2 t  
1 
l+2t 
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els investigated are presented in Table 3. These models 
assume a single parameter for genotypic fitness within 
lines (s) and a single between-line fitness parameter (t). 
Model I assumes multiplicative overdominance. Model II 
represents a case of  directional selection where the AB/AB 
genotype is favored within lines, while between-line selec- 
tion favors the ab/ab genotype. Model III presents an ex- 
treme case of  disruptive selection where genotypes AB/AB 
and ab/ab are favored over all other genotypes. 

Table 4 reports a sample of  numerical results contrast- 
ing the effect of  mutation and within-line selection on 
gene frequencies, heterozygosity and the correlation in 
allelic state over loci. All numerical results reported in the 
Tables were obtained using the approximations outlined 
in the section on Computational Methods. Exact solutions 
to equation (1), for a few parameter values, were also 
obtained to check the accuracy of  the approximate solu- 
tions. Very close agreement between the exact and ap- 
proximate solutions was observed in all cases. For each 
choice of  mutation and selection parameters, runs were 
made over a range of  recombination varying from 0.01 to 

0.5. The f'mal equilibrium values were always essentially 
independent of  the degree of  linkage assumed between the 
loci. The explanation can be readily seen from the fre- 
quency of  double heterozygotes, which are usually two or 
more orders of  magnitude below the mutation rates due 
to the intense inbreeding of  the full-sib mating scheme. 
New gametic types arise from mutation much more fre- 
quently than they do from recombination. Consequently, 
recombination has no influence on the final equilibrium 
structure. For the same reason, the correlation in allelic 
state among loci (standardized linkage disequilibrium) is 
always close to zero for models I and II at equilibrium. 

Mutation, which acts independently among loci, results in 
independence at the level o f  the gametic frequency distri- 
bution. Extensive numerical investigation of  models of  di- 
rectional selection and models of  selection favoring heter- 
ozygotes has failed to reveal any cases where the level of  
linkage disequilibrium was appreciable. Reference to the 
equilibrium gene frequencies and mutation rates also 
shows that mutation plays an important role in determin- 
ing the final equilibrium structure as is the case for single- 
loci (Clegg and Kidwell 1974). Within-line selection is rel- 
atively inefficient compared to mutation because the 
within-line variance at equilibrium is small. 

The only class of  models which lead to linkage disequi- 
librium at equilibrium are models of  disruptive selection 
(e.g. Model III). The presence of  mutation stabilizes the 
internal equilibrium under these selection schemes. Hence, 
the extreme homozygous genotypes can be simultaneous- 
ly maintained. 

Table 5 contrasts the equilibrium effects of  between- 
and within-line selection. Unlike within-line selection, be- 
tween-line selection has the predominant influence on 
gene frequency equilibrium. This, of  course, follows from 
the fact that virtually all the genetic variance is expressed 
between lines rather than between genotypes within lines. 
Like within-line selection, between-line selection produces 
appreciable linkage disequilibrium only when the selection 
is disruptive (Model III). All models o f  symmetrical and 
directional selection investigated lead to zero or very small 
values of  linkage disequilibrium regardless of  the degree of  
epistasis assumed. 

In seeking to apply these results to experimental in- 
breeding programs, an important caveat should be ob- 
served. The equilibrium distributions are a function of  

Table 4. The effect of within-line selection and mutation on equilibrium structure. The selection models are 
defined in Table 3. Mutation rates are assumed to be equal at the two loci, i.e. tz a -- ~z b; v a = v b. The recombination 
fraction is .01. p(A) and p(B) are the frequencies of alleles A and B. h(A) and h(B) are the frequencies of hetero- 
zygotes at the A and B loci and h(D) is the frequency of double heterozygotes, r is the correlation in allelic state 
over loci Since the models are symmetric p(A) = p(B) and h(A) = h(B) 

Model # v s p(A)=p(B) h(A)=h(B) h(D) r 

II 

III 

I0 -s I0 -s .I .5000 1.50 X 10 -4 3.87 • I0 -'I 

I0 -s I0 -s .5 .5000 3.24 X 10 -4 2.83 X 10 -7 

10 -s 10 -6 .I .0909 2.73 • I0 -s 1.28 X 10 -9 

I0 -s 10 -6 .5 .0909 5.90 X I0 -s 9.37 X 10 -9 

10 -s 10 -5 .1 .7093 1.13 X 10 -4 1.93 X I0 -s 

10 -s 10 -s .4 .9981 4.20 X I0 -s 2.60 X 10 -9 

I0 -s lO -6 .I .1961 3.12 X I0 -s 1.48 X 10 -9 

I0 -s 10 -6 .4 .9816 4.13 X I0 -s 2.51 X 10 -9 

I0 -s I0 -s .I .5000 9.96 X I0 -s 1.74 X I0 -s 

i0 -s I0 "5 .4 .5000 3.45 X 10 -s 6.59 X 10 -9 

I0 -s 10 -6 .I .0284 1.25 X I0 -s 4.20 X 10 -I~ 

I0 -s 10 -6 .4 .0099 3.76 X 10 -6 1.31 X 10 -l~ 

0.0 

0.0 

0.0 

0.0 

0.0 
0.0 
0.0 
0.0 

+.6692 

+.9995 

+.3160 

+.9976 
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and p(B)], heterozygosity [h(A), h(B) and h(D)] and the correlation in allelic state between loci (r) 
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Fitness model Parameter values Equilibrium statistics 

Within Between t~ u s t p(A) = p(B) h(A) = h(B) h(D) r 

10 -s 10 -5 0 .001 .5000 1.21 X 10 -4 2.26 X 10 -8 .0000 
I I 

10 -s I0 -s .4 .001 .5000 2.75 X 10 -4 1.86 X 10 -7 .0000 

I II 

II II 

III III 

10 -5 10 -5 0 .001 .0025 1.19 • 10 -4 2.14 X 10 -s .0000 
10 -s 10 -s .4 .001 .0047 2.68 X 10 -4 1.64 X 10 -7 .0000 
10 -s 10 -6 0 .001 .0003 1.19 X 10 -s 2.15 X 10 -1~ .0000 
10 -s 10 -6 .4 .001 .0005 2.69 • 10 -s 1.66 • 10 -9 .0000 

10 -s I0 -s 0 .001 .0025 1.19 X 10 -4 2.14 • I0 -s .0000 

I0 -s I0 -s .4 .001 .0261 4.01 X 10 -4 3.62 X 10 -7 -.0002 

I0 -s 10 -6 0 .001 .0003 1.19 X I0 -s 2.15 X 10 -14 .0000 

I0 -s 10 -6 .4 .001 .0026 4.11 X I0 -s 3.87 X 10 -9 -.0000 

10 -5 10 -s .1 0 .5000 9.96 • 10 -5 1.84 x 10 -8 +.6692 
10 -s 10 -s .2 0 .5000 6.80 • 10 -s 1.25 • 10 -s +.9330 
10 -s 10 -6 .1 0 .0284 1.25 x 10 -5 4.20 x 10 -l~ +.3160 
10 -s 10 -6 .2 0 .0132 7.61 x 10 -6 2.55 x 10 -1~ +.7393 
10 -s 10 -s 0 .001 .5000 1.18 • 10 -4 2.15 x 10 -s +.9949 
10 -5 10 -5 .1 .001 .5000 8.48 x 10 -5 1.51 x 10 -8 +.9978 
10 -5 10 -6 0 .001 .0001 1.19 x 10 -s 2.16 x 10 -t~ +.0947 
10 -s 10- 4 .1 .001 .0001 8.49 x 10 -4 1.52 x 10 -1~ +.3307 

m u t a t i o n  rates  w h i c h  are o rd inar i ly  small.  C o n s e q u e n t l y ,  

the  t ime  to  achieve equ i l i b r ium will be  large especial ly  i f  

b e t w e e n  l ine se lec t ion  is ins ign i f ican t  and  the  in i t ia l  distri-  

b u t i o n  fea tu res  c o m p l e t e  h o m o z y g o s i t y .  

A n a t u r a l  q u e s t i o n  to  cons ide r  is w h e t h e r  t he  equil i-  

b r i u m  resul ts  for  two- loc i  can  be  p r ed i c t ed  f r o m  a k n o w -  

ledge o f  one- locus  statics.  In  m o s t  ins tances  the  answer  to  

this  q u e s t i o n  appears  to  be  yes. Our  numer i ca l  calcula- 

t ions  have  fai led to  reveal  any  d e p e n d e n c e  o f  equi l ibr ia  o n  

l inkage.  M u t a t i o n ,  w h i c h  acts  i n d e p e n d e n t l y  over  loci,  

p lays  a m a j o r  role in  d e t e r m i n i n g  equ i l ib r ium dis t r ibu-  

t ions ,  and  l inkage d i sequ i l ib r ium is usua l ly  close to  zero.  

For  these  reasons,  we conc lude  t h a t  two- locus  equi l ibr ia  

will be  closely a p p r o x i m a t e d  b y  the  app rop r i a t e  one- locus  

d i s t r i bu t i ons  for  m o s t  mode l s  o f  select ion.  
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